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I. INTRODUCTION ke

The problem of electromagnetic scattering from a perfectly conducting
surface S has been solved by first placing an unknown electric current J L ene
on this surface, next writing the electric field integral equation for P
and finally numerically solving this equation by the method of moments [1], Ef "

[2]. The solution thus obtained will be accurate if S encloses neither a

resonant cavity nor a cavity with an extremely small aperture, and if the
maximum dimension of S is not more than a few wavelengths. The surface §

may be two-dimensional or three-dimensional. Of course, if S is two-

dimensional, then it is infinitely long in one direction, and we require

only that its contour in the plane transverse to this direction be not

more than a few wavelengths long.

If S forms a cavity with a very small aperture, then the above

method will fail to accurately determine the field inside this cavity § }x,
-"?\"T\ ;
because this field, being the sum of the incident field and the field due :f:%:'

to J, will be very small. The field due to J nearly cancels the incident -
field. Thus, a small percentage error in J will give rise to a large per-
centage error in the field inside the cavity.

The field inside a cavity with a small aperture has been accurately
determined by expressing it as the sum of the short-circuit field and the

field due to an electric current source which is the negative of the short-

circuit current on the shorted aperture [3]. This electric current source

radiates in the presence of the conducting surface S. The short-circuit AN
.
field is the field that would exist if the aperture were closed by a ;:ﬁu
.'.':‘:\
perfect conductor. The short-circuit current is the electric current that
':‘{".-:“.
would exist on § if the aperture were closed by a perfect conductor. RO
.:::: ._‘: ‘
"i'j:c:
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An alternative method called the generalized network formulation

for aperture problems [4]-[6] has been proposed for the case in which S

2

SR

.

forms a cavity with a small aperture. In this method, the aperture is

nd

s

closed with a perfect conductor, a sheet of unknown magnetic current M

is placed on one side of the shorted aperture, and -M is placed on the

e W
S

other side. The resulting situation will be the same as that of the
original scattering problem if the component of magnetic field tangent

to the shorted aperture is continuous across the shorted aperture.
Following the method of moments, a linear combination of expansion func-
tions is substituted for M into the equation that expresses continuity of
the tangential magnetic field across the shorted aperture and then this
equation is solved numerically for the coefficients of the expansion func-
tions. The generalized network formulation for aperture problems is easily
implemented for an aperture in an infinite conducting plane because the
electric current induced on the complete conducting plane by each expansion
function for M can be accounted for by imaging that expansion function about
the plane [5], [6]. The complete conducting plane is the plane with the
aperture shorted.

When the aperture is in a curved surface, the generalized network
formulation for aperture problems is not as easy to implement because it is
difficult to obtain the electromagnetic field produced by each expansion
function for M placed on either side of the shorted aperture and radiating
in the presence of the complete conducting surface. The complete conduct-
ing surface is the conducting surface S with its aperture shorted. The
problem of obtaining the electromagnetic field due to such an expansion
function so radiating 1s a scattering problem in which the impressed

source is on the scatterer. Two static problems~of this type were con-
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sidered in [7]. 1In the first problem, the objective was to find the

LT e
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electrostatic field due to an electrostatic dipole on the conducting

surface of a sphere. The dipole was normal to the sphere. In the

second problem, the objective was to find the magnetostatic field due

TWEN Y 5N

to a magnetostatic dipole tangentially placed on the conducting sur-

y, 5
)

face of a sphere. 1In [7], each of these two static scattering problems

r
'l 3
.

P

-".
. P

was solved by a method in which a pseudo-image was used. We call this

method the pseudo-image method.

P

The problem of electromagnetic scattering from an infinitely long,
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A NS

infinitesimally thin, perfectly conducting cylindrical surface with an
infinitely long but narrow slot is stated in Section II. Solution by
means of the generalized network formulation for aperture problems is
outlined in Section III. 1In Sections II and III, the electromagnetic
excitation is from impressed sources. The field due to the impressed
sources radiating in the presence of the complete conducting surface is
called the short-circuit field due to the impressed sources. This field
is evaluated in Section IV. Only one expansion function for M was used
in Section III. In Section V, the pseudo-image method is used to obtain
the short-circuit field due to this expansion function placed on either
side of the shorted aperture. In Section VI, coefficients appearing in
previously derived expressions for the short-circuit fields due to the
impressed sources and to the expansion function for M are evaluated for
T plane wave excitation. In Section VII, the coefficient of the expan-

sion function for M is evaluated for TM plane wave excitation.
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ITI. STATEMENT OF THE PROBLEM

The combination of a known impressed electric current source iimp
and a known impressed magnetic current sourcegimp radiates in a homogeneous
medium with permeability U and permittivity € to produce an incident electro-
magnetic field (Einc, Einc) that is independent of z. An infinitely long
perfectly conducting cylindrical éurface called S is now placed in the
medium. The axis of S is the z axis so that the electromagnetic field
radiated by Qlimp, E?mp) in the presence of S is independent of z. This
field is called (E, H).

Our purpose is to determine (E, H) when S is infinitely thin and, as
viewed in the xy plane, appears as the contour shown in Fig. 1. This con-
tour is a chain of N-1 straight line segments. The jth segment extends from

The (x,y) coordinates of the points P, and

the point Pj to the point Pj+ 1

1
PN are (0,w) and (0,~w), respectively. The plane strip of area whose pro-

jection on the xy plane is the straight line segment between points PV

and P1 in Fig. 1 is called the aperture. If there were no gap between the

N and Pl’ then S would enclose a cavity. If the gap were small, the

straightforward method via solution of the electric field integral equation

points P

for the induced electric current on S would fail to accurately determine
(E, H) inside the cavity. This method would fail because it gives (E, H) as
the sum of two fields that nearly cancel each other inside the cavity,

(Einc’ E:i.m:

) and the field due to the induced electric current on S. The
method of solution described in the next section accurately determines

(E, H) when the gap is small.

o
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Fig. 1. The original problem as viewed in the xy plane. The two-
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dimensional sources J P and M ™ radiate in the presence

of the cylindrical surface S.
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III. SOLUTION BY THE GENERALIZED NETWORK FORMULATION FOR APERTURE PROBLEMS

The original problem of Fig. 1 is replaced by the equivalent problem
of Fig. 2. The situation of Fig. 2 was obtained by closing the aperture with
a perfectly conducting plane strip, placing the magnetic current sheet M on
the left-hand side of the strip, and placing ~M on the right-hand side of

the strip. Here,
M=u xE eH)

where u is the unit vector in the x direction and E is the electric field
in the aperture in Fig. 1. The combination of S and the plane strip that
short circuits the aperture is called $%¢ in Fig. 2. The surface s%¢ divides
space into two regions, an external region called region a and an interior
or cavity region called region b.
If there was no electric current on the shorting strip in Fig. 2,
then this strip could be removed. After removal of the shorting strip,
the magnetic current sheets M and -M would cancel each other resulting in
the situation of Fig. 1. Therefore, the situation of Fig. 2 will be

equivalent to that of Fig. 1 if there is no electric current on the short-

ing strip in Fig. 2. There will be no electric current on this shorting
strip if the tangential magnetic field immediately to the left of the
shorting strip is equal to the tangential magnetic field immediately to
the right of the shorting strip. Hence, we write
a imp , imp a - b _ 2 A
Etan(i y M) + ﬂtan(O,ﬂ) ﬂtan(o’ M) omn A (2

where A is the surface of the shorting strip. The subscript tan in (2)

denotes the component tangent to A. In (2), ﬂé(iimp, !imp) is the magnetic g?;—«

et e * . et e ta -
. Y . %
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i sc
field in region a due to ({imp, ﬂ}mp) radiating in the presence of S,

ga(o, M) is the magnetic field in region a due to M placed on the left-
hand side of the shorting strip and radiating in the presence of Ssc’ and
EP(O, -M) is the magnetic field in region b due to -M placed on the right=-

hand side of the shorting strip and radiating in the presence of s°¢. Each

magnetic field in (2) has two arguments. The first argument is an electric :'Eji
current, and the second argument is a magnetic current. Actually, the left-
hand side of (2) should be evaluated not exactly on A, but immediately to Pi_f
the left of A in region a. Moreover, the right—haﬁd side of (2) should be
evaluated not exactly on A, but immediately to the right of A in region b.
Equation (2) ensures that the situation of Fig. 2 is equivalent to that of !?FT
Fig. 1.
Since the situation of Fig. 2 is equivalent to that of Fig. 1, the
electromagnetic field in Fig. 2 is equél to the unknown electromagnetic
field (E, H) in Fig. 1. The field (E, H) in Fig. 2 is partitioned into

b
(Ea, Eé) and (Eb, EP) where (Eé, Ea) is the field in region a, and (EP, H)

is the field in region b.

(e

, Eé), region a
E, H) = (3) o

(EP, EP), region b

Eé - Eé(limp’ ﬁimp) + E?(O’ ) )

B = 1™, w'™) + 10, W (5)

E® = £°(0, 1) ) o
b rF

B = B2(0, W) 7

- . - . . L. IR et
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The magnetic fields on the right~hand sides of (5) and (7) were defined

4Ny

in the previous paragraph. The E's on the right-hand sides of (4) and

P
s 5 !
'.
LN &

C R A

(6) are the corresponding electric fields. Namely, gagllmp,‘!imp) is

v & 8,

-
g

X

the electric field in region a due to Q{imp, ﬁimp) radiating in the pre-

&7

sence of ssc’ g?(o, M) is the electric field in region a due to M placed

on the left-hand side of the shorting strip and radiating in the presence

sC

b .
of 87, and E" (0, -M) is the electric field in region b due to -M placed

on the right-hand side of the shorting strip and radiating in the presence

I
DRI |

of s°¢. Each electric field on the right-hand sides of (4) and (6) has

two arguments. The first argument is an electric current, and the second
argument is a magnetic current.

Some fields on the right-hand sides of (4)-(7) depend on M. To

determine M, we appeal to (2). Rearranging the terms in (2), we obtain

ud _ P g imp  imp ST
Etan (O 4 E) Etan (O’ H) Etan (_J_,_ ’ _M_ ) on A (8) K )
Next, M is approximated by

where V is an unknown complex constant to be evaluated later and gl is RSN

an expansion function that will be specified later when the incident

field (Einc’ Hinc)

is specialized to a T™M field. The expansion function

sC

El will be tangent to S and independent of z where z is the coordinate

measured perpendicular to the xy plane. The magnetic fields in (8) will

also be independent of z so that it will suffice to satisfy (8) only on
the projection of A in the xy plane. This projection is the straight line
segment between the points PN and P1 in Fig. 2. Substituting (9) into (8),

taking the scalar product of (8) with !1, and then integrating this product




from -w to w with respect to y at x=0, we obtain

X + Y0V =1

where w
a a
Y = - J §1 - H (0, yl)dy
-
\
b b
-w
w
I = M, + B2, ui™)yay

10

(10)

1)

(12)

(13)

Actually, the magnetic fields in (11) and (13) are evaluated not exactly

shorting strip in region b.
a b

Substitution of (9) into (4)-(7) gives

a imp
s

=EQ

<]

¥'™) + vE (0, M)

B = B2, ¥ + vt o, M)

- VE°(0, M)

]
[]

b
- VE (O’ E’l)

2 <]
[}

The electromagnetic fields on the right-hand sides of (14)-(17) are

b
then substituted into expressions (11)-(13) for ¥?, Y°, and I.

RIS T A P L S R e T Lt TP T AR T}
RIS (O BT PSR (AR SRR e e
PN 30 U AT T S AL SR IO SN S50 RN I R LTS

o at x=0 on the shorting strip, but immediately to the left of the shorting
strip in region a. Moreover, the magnetic field in (12) is evaluated not

exactly at x=0 on the shorting strip, but immediately to the right of the

If Y7, Y, and I can be determined, then (10) can be solved for V.

(14)

(15)

(16)

(17)

obtained in the next two sections. The magnetic fields so obtained are




1V. THE SHORT-CIRCUIT FIELD DUE TO THE IMPRESSED SOURCES &_;2

In this section, the electromagnetic field (_Iga(_.l_imp, gimp),
ga(gimp. Eimp)) which appears in (14) and (15) is evaluated. This field
is the field in region a due to the impressed sources (:Iimp’ _lgimp) radi-
ating in the presence of s°¢. The Xy plane view of the situation in

which this field exists is shown in Fig. 3. It is evident from Fig. 3

that
_E.a(iimp’ !imp) = Einc + _E_:(iinc, 0) 1in region a (18) ’.\.
l';;‘.':‘:
and r.\.;;‘::
i i i Py
E_a(_{imp, E_mp) =H ne 4 HQJ ¢ 0) in region a (19) .:::
where imc is the electric current induced on Ssc by (glmp’ y_lmp), In
i

(18) and (19), (Einc’ Einc) is the electromagnetic field due to (iimp, M mp)
radiating in the presence of the homogeneous medium characterized by (u,€), e
ine ince . E. o
and (E(J7 ~, 0), H(J , 0)) is the electromagnetic field due to the elec- oSy
N
tric current iim‘- radiating in the presence of the same homogeneous medium. ::::-':-:
e
i

I.

L

Although the right-hand sides of (18) and (19) are defined in all space,

v
.

"y
.

the left-hand sides of (18) and (19) are defined only in region a so that

£4

[
L s
o

(18) and (19) can be valid only in region a. e
A
Since $°¢ is perfectly conducting in Fig. 3, r\_.*:
e
2 ('™, y'™) = o on s5€ (20)
~tan — = R
AN
where the subscript tan denotes the component tangent to Ssc. Because i
the field in (20) is given by (18), we obtain the following equation .:\a.
-~
for J inc. . ’::
_é (Jinc 0y = glne . gsc (21) o
~tan = '’ =tan
-{_ﬂ_"
'n‘_\:‘
::.'-,_.‘

0
Lot e a y . T AT T T e T T T PP P T I
0, L e u;.'-'.a'-('-:‘.t-*-mc_g- \ e '1.1;.‘."'.:.'_';' CACaN _-....-“‘ .............. e e e e e el e,
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Fig. 3. The xy plane view of the situation in which the electromagnetic "
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field (E2(J™™P, u'™), g*('™P, ¥'™)) exists. Sy
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The electric current J in (21) is approximated by

2 I (22)
j=1

where {Iinc} are unknown constants and {gj} are expansion functions that

1nc inc

will be specified later when the incident field (E ) is specialized

to a ™ field. Each of the expansion functions {gi} will be on $°¢, tangent

to Ssc’ and independent of z.

Equation (22) is substituted into (21) and then the scalar product

of (21) with_._I_i is integrated around the contour of s°¢ in the Xy plane.
Letting i = 1,2,..., N, we obtain N simultaneous equations which are written

in matrix form as

Z>inc 2>inc

zZI =V (23)

*inc

where Z is a square matrix of order N and each of the quantities I and

yine is a column vector of N elements. The jth element of finc is the

inc

constant Ij that appears in (22). The ijth element of Z is called Zij and

is given by
N+1
Zij = - ii ¢ E.(ij
0

» 0)dt : (24)

where the variable of integration t is the arc length along the contour

SC

of S in the xy plane. Starting from zero at the point P, in Fig. 3, the

1

variable t increases as the contour is transversed in the clockwise direc-

tion, attaining the value tysp UPOR arrival back at the starting point Pl'

The ith element of §inc in (23) is called vinc and is given by




14
tN41
inc inec
vy J J; “Ede (25)
0

in

After the elements of Z and 6 € have been obtained, (23) can be

solved for finc

in which 1§“°

. The electric current iinc will then be given by (22)

. Zinc X
is the jth element of I . Substitution of (22) into

(18) and (19) gives

N

a, i i .
(g1, '™ o glne 4 1% E(J., 0) 1in region a (26)
= a1 3 T3
j=1
and
N
a, i
BT, o™y = g1%€ 4 T 3 B, 0)  in region a 7
j=1 )
Substituting (27) into (13), we obtain
w w
inc ¥ inc -~ .
I= Mooc H Cdy + § 1 M, +H (J., 0) dy (28) .
=1 = j=1 3 -1 == .
—w - ...-l.‘-.
- R
where the superscript "-" denotes magnetic field evaluation at x=0 , NN
e
that is, immediately to the left of the shorting strip. A

V., THE PSEUDO~IMAGE METHOD OF OBTAINING THE SHORT-CIRCUIT FIELDS DUE
TO THE MAGNETIC CURRENT EXPANSION FUNCTION

In this section, the electromagnetic fields (g?(o, gl), g?(o, gi))

' ‘.'_\’:
and (EP(O, 51), EP(O, gl)) of (14)-(17) are evaluated by means of a method %{g}:
called the pseudo-image method. Here, g?(o. §1) and gf(o, §1) are, respec- ;;;f

—
tively, the electric and magnetic fields in region a due to the magnetic A

current sheet El placed on the left-hand side of the shorted aperture and
radiating in the nresence of $°¢. Moreover, gb(o, M) and EP(O, yl) are,

respectively, the electric and magnetic fields in region b due to the
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magnetic current sheet !1 placed on the right-hand side of the shorted
aperture and radiating in the presence of sS¢

Figure 4 shows the xy plane view of the situation in which (ga(o, gl).
g?(o, gl)) exists. Since the perfectly conducting surface s%¢ completely
isolates region b from region a, any source can be placed in region b
without affecting the electromagnetic field (E* (O, M), 1o, M)) in
region a. We place the magnetic current sheet 51 on the right-hand side
of the shorted aperture as shown in Fig. 5.

The field in region a of Fig. 5 is the same as that in region a

of Fig. 4, namely, (ga(o, 51), 5?(0, gl)). The magnetic current sheet on
the right-hand side of the shorted aperture in Fig. 5 is called the pseudo-
image of the magnetic current sheet on the left-hand side of the shorted
aperture. The pseudo~image annihilates the primary electric field exci-
tation on the shorted aperture. This annihilation should considerably
reduce the electric current induced om §°° and, hopefully, improve the
behavior of this current so that it can be more accurately approximated by
a l7aear combination of simple expansion functiouns.

It is evident from Fig. 5 that

E%(0, M) = E(O, 24)) + E(3%, 0) in region a (29)
and

B0, M) = H(O, 24) + HQJ", 0) in region a (30)

where gé is the electric current induced on s%¢ in Fig. 5, and zgl repre~
sents the combination of the two magnetic current sheets in Fig., 5, each

of density M. On the right-hand sides of (29) and (30), (E(Z%, 0), H(J®, 0))

1°
is the electromagnetic field due to the electric current gé, and (E(O, 2&1),

e e e et
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Fig. 5. The xy plane view of the equivalent situation in which the
electromagnetic field (g?(o,gl), g?(o,gl)) exists. The
magnetic current sheet immediately to the right of the
shorted aperture is called the pseudo-image of the one

immediately to the left.
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H(O, 2!1)) is the electromagnetic field due to the magnetic current Zgl.
In the previous sentence, both gé and 2!1 radiate in the presence of the
homogeneous medium characterized by (u,£). The right-hand sides of (29)
and (30) are the fields everywhere in Fig. 5, whereas the left-hand sides
of (29) and (30) are defined only in region a so that (29) and (30) can
be valid only in region a.

In order to determine g?(o, ﬁl) and g?(o, yl), we must, according

to (29) and (30), first determine g?. Since $°€ is perfectly conducting

in Fig. S,
a sc

Etan(o’ gl) 0 on § (31)
where the subscript tan denotes the component tangent to s°¢. Because the R,
.:,C.':A.-f_
field in (31) is given by (29), we obtain the following equation for g?. ;IEEk
A
a sc PRty
“E nJ»0) =E_ (0, 24) on S (32)
:.\‘:~:
AR TR
When E__ (0, 24)) is evaluated on the part of s°€ labeled the shorted NN
— — I
-\.:\.1__
aperture in Fig. 5, the magnetic current 2§1 is split into two current R

sheets, each of density El’ one on each side of the shorted aperture. As

a result, g&an(o, 2M,) vanishes on the shorted aperture. When gtan(o, 2!1)

is evaluated on the remaining part of Ssc’ 2!1 is taken to be a single sheet e -

of magnetic current of density 2&1 on the shorted aperture.

The electric current gé in (32) is approximated by AN
..‘ ‘:\.:
a T . -

3= 7 1773 (33) y

j’=1 j =3

where {I;} are unknown constants and fgj} are the expansion functions that

appear in (22). Expression (33) is substituted into (32) and then the

scalar product of (32) with ii is integrated around the contour of s3¢ in
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the xy plane. Letting i =1,2,..., N, we obtain N simultaneous equations

which can be written in matrix form as ”
!".’-
B A
1
21 -7 (36) P
b
where Z is the NxN matrix that appears in (23) and each of the quantities !& .

»a >a . a
I and V 1is a column vector of N elements. The jth element of 1% is the

constant I? that appears in (33). The ith element of V2 is called Vi and AN

is given by

7+l

a - [ ]

Vi = j ‘ii E(0, 2!1)dt (35)
0

where t and t are the same as in (25).

N+1
After the elements of Z and V2 have been obtained, (34) can be

solved for I°. The electric current g? will then be given by (33) in

which I? is the jth element of fa. Substitution of (33) into (29) and

(30) gives
a N a
E (0, M) = E(0, 2M,) + Y 15 E(J., 0) in region a (36)
= = = - je1 3 3

and
a N a
%, M) = H(0, 2M;) + ) I H(J,, 0) 1in region a (37)
= -1 = -1 ja1 d ==

The right-hand sides of (36) and (37) are the fields everywhere in Fig. 5,
whereas the left-hand sides of (36) and (37) are defined only in region a

so that (36) and (37) can be valid only in region a. Substituting (37

into (11), we obtain

w N w

a a . W

v3 - - J M, ¢ HO, 24))dy - jzl 1] J m o H (g, 0)dy (38)
- -W

where the superscript "-" denotes magnetic field evaluation at x=0 , that is,
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immediately to the left of the shorting strip.

In (16) and (17), (EP(O, ﬁf,_ﬂb(o, !1)) is the electromagnetic
field in region b due to the magnetic current sheet §1 placed on the
right-hand side of the shorted aperture and radiating in the presence of
s%¢. Since the perfectly conducting surface s5¢ completely isolates
region a from region b, the magnetic current sheet Ei can be placed on
the left-hand side of the shorting strip without affecting the electro-
magnetic field (EP(O,gl), EP(O, !1)) in region b. Introduction of this
current sheet gives the situation of Fig. 5. Since the electromagnetic

field everywhere in Fig. 5 is given by the right-hand sides of (36) and

(37), it is evident that

N
E°(0, M,) = E(0, 2M) + § 12 E(J., 0) in region b (39)
= -1 = -1 jer 3 T
and
b N a
H (0, M) = H(O, 24,) + | I, H(J., O) in region b (40)
=. =1 = =1 51 737 _
Substituting (40) into (12), we obtain
w A\
N
¥ =- | M «HO yay - 3 15 | M, - B'(3., 0)dy (41)
-1 = Zﬁl j=1 3 e
- -W

where the superscript "+" denotes magnetic field evaluation at x=0+,
that is, immediately to the right of the shorting strip.

The electromagnetic field (E, H) of Fig. 1 is now given by (3) in
which gé is obtained by substituting (26) and (36) into (14), gé is ob-
tained by substituting (27) and (37) into (15), EP is obtained by substi-

tuting (39) into (16), and EP is obtained by substituting (40) into (17).
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N . N
(_kginc + 1 7EQ, 0)) + V(E(Q, 2) + ] 15E(J., 0)), region a
ga1 g jo1 373
E = (42)
x a
-V(E(O, 24) + L I3 EQ., 0)) , region b
j-l J J
inc Y inc N a
- @+ Y I7"CH,, 0)) + V(H(O, 2M.) + ) I°H(J., 0)), region a
. . =13 T3 - R = R
H = (43)
% N
V(0. ) + L 1T HWL, 0)) . region b
- j=1 1 773 ,
In (42) and (43), I;nc is the jth element of the column vector finc that

satisfies (23) in which the ijth element of Z is given by (24) and the ith
Zinc | . a . .
element of V is given by (25). Furthermore, Ij is the jth element of
the column vector I- that satisfies (34) in which the ijth element of Z is
given by (24) and the ith element of V@ is given by (35). Moreover, V is
} _ the complex number that satisfies (10) in which Ya, Yb, and I are given by

(38), (41), and (28), respectively.

VI. EVALUATION OF THE ELECTRIC CURRENT COEFFICIENTS I'7C anp 1% FOR T
J J
PLANE WAVE EXCITATION

In this section, the coefficients {I§nc} and {I?} that appear in

(42) and (43) are evaluated for the case in which the incident electro-

magnetic field (Elnc’ Einc) is the TM plane wave given by

inc _ u ejk(x cos 3¢ &+ y sin ¢inc
-z

E ) (44)

jk(x cos ¢1nc + y sin ®1nc)

inc 1 inc n
= (~ + 4
( u sin ¢ u _cos $ )e ( 5)

H

where Ex’ Ey' and 32 are the unit vectors in the x,y, and z directions,
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respectively. Moreover, N and k are, respectively, the intrinsic impedance
and wave number of the homogeneous medium with permeability i and permit-
tivity €. Furthermore, @inc is the azimuthal angle of the direction from
which the plane wave comes. Measured in the xy plane, binc is zero on the
positive x axis and increases as the y axis is approached.

When (Einc’ Eénc) is the TM field given by (44) and (45), we let the
electric current expansion function gj.be the z directed pulse of unit

amplitude on the jth segment of the contour of s%¢ in the Xy plane.

3,0 = y 3=1,2,...,N (46)

o , otherwise

In (46), tj is the value of t at the point Pj' The previous statement is

valid for j=1,2,...,N. As in (24), t is the total length of the contour

N+1
of s%¢ in the xy plane. For j=1,2,...,N-1, the jth segment of the contour
of §°¢ in the xy plane is the straight line segment that runs from the point

in Fig. 3. The Nth segment of the contour of s°¢ in

Pj to the point Pj+l

the xy plane is the straight line segment that runs from the point PN to

the point P, in Fig. 3.

1

When Q':_:an’ Einc

) is the TM field given by (44) and (45), we let the ——
magnetic current expansion function El be the function of y given by

Ey J1 - (y/w)2 , -w<y<w

M (y) = (47) »
0 . Iy{ > w v

To solve (23) for finc’ we must first evaluate the elements of Z :;?s;

and VS, The electric field E(gj, 0) that appears in expression (24) !ffﬂ-
RO

for Z,, is given by [8, eq. (3-5)] R
iJ :,}.. ‘.~:
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where Héz) is the Hankel function of the second kind of order zero. Further-
more, (x,y) are the rectangular coordinates of the point at which gﬂgj, 0) is
evaluated, and (x',y') are the rectangular coordinates of the point on the

contour of S°C at which the arc length is t'. In view of (46), substitution

of (48) into (24) gives

tiva Y4

Z,, = 54'1 J dt I dt" Hé” (k‘/(x-x')z + (3-y")2) (49)
t. t.
i j

where (x,y) are the rectangular coordinates of the point on the contour of

$%¢ at which the arc length is t.

If new variables of integration u and u' are defined by

u=%k (t - 0.5 (ti +t,.,.)) (50)

i+l

u'= k (t' - 0.5 (tj + tj )) (51)

+1

then (49) becomes

0.5y 0.5y
7 =N ' PRTR O DA (52)
ij 4k o ij

-O.SYi -O.SYj

3 )
Yy =k ﬁxi+1 =X (g m YY) (53)

where (xi, yi) are the (x,y) coordinates of the point on the contour of

8cC

Furthermore,

S°" at which the arc length is t

1

2
aij -\[(kx‘;-kx"' + u cos qbi-u'cos ¢j)2 + (kyI-ky;- + u sin ¢’i-u'31n ¢j)

3
(54)
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+ +
where X, and Yy are, respectively, the x and y coordinates of the midpoint

of the ith segment of the contour of Ssc’ and ¢i is the angle that the ith

- segment makes with the positive x axis. More precisely,
0.5, +x) (55)
Xy a7 Xy
* - 0.5¢ +y.) (56)
Y4 T 920 T Yy
k(x, , - %)
cos &, = irl = (57)
1 Y
i
5 k(y, ., - ¥,)
< sin $, = —if i (58)
; 1 Y.
- i
. If 1 # j, the double integral in (52) is evaluated by the method
2 of two-dimensional Gaussian quadrature. If i = j, (52) reduces to
- 0.5y, 0.5Y,
5 z,, = B " au 8D (Juma (59)
: ii © &k v uoFy liumu
—O.SYi -O.SYi
g The bracketed term on the right-hand side of the identity
] @y o1 232 10 (@ 4 m@ ey - 1 4 42 10 @
H™ @) =1-<1n () + [R () -1+ 1n ()] (60)

approaches zero as x approaches zero [9, p. 462]. Here, 1n vy is Euler's

constant. Substitution of (60) into (59) gives

2 0.5y,

N -
N Zii 7K C + du
~0.5y, 0.5y, 61)

0.5y, ,
o (1 (jumu']) - 1 + 324, (x_lgle)]

where

MMM YY. @€
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i '
c= j du J( du' (1 -4 10 (11“—;“—l>1 (62)
-0.5v4 -0.5v4

Using [10, Formulas 610. and 610.1.] to evaluate the double integral in

(62), we obtain

.2
JY, 1Y
c=vi+=2@3-2m N (63)

Substitution of (63) into (61) gives

Jy YY.
R W B IR SO i
Ziy ")yt G -21n 7))
0.5yi 0.5yi 7 -
i - ' kY ]
+ j( du du' [ué”(\u-u'{) -1+ (Iliz_u_l)] b (64) RN
-O.SYi -O.SYi R

Since its integrand is bounded, the iterated integral in (64) can be
accurately evaluated by the method of two-dimensi.nal Gaussian quadrature.

Substituting (44) and (46) into (25), we obtain

ci+l inc inc)
Vinc - f eJk(x cos o + vy sin ¢ dt (65)
t

where (x,y) are the rectangular coordinates of the point on the contour

of 3¢ at which the arc length is t. If the variable of integration in ;fnf
(65) is changed from t to u of (50), then (65) becomes flyj
c inc !Lr

jk(xI cos ¢in + y: sin ¢1nc) 0'SYi ju cos (¢i—¢ ) e

ine e e du AR

<
"
]

Et ~0.5y
" 1 (66)

The integral in (66) being tractable, (66) reduces to

........
.........................




MoE RN

3
/1
p
i3
P o
'_,.','_.,'_
Ny
Y

26

v w ’
L2 5
N

A0

A

i

o
>

v
'S '-ﬂ -
13 Mt

. + +
ine Y3 Jk(x; cos ¢inc + vy, sin ¢inc) sin(0.5y c°5(¢'-¢inc))
v RET i ( i i
i k

)
0. SYicos(¢i-d>inc) ; LN
67)

T

c

-
Now, the quantities Z and v that appear in (23) are known, the diagonal

elements of Z being given by (64), the remaining elements of Z by (52), and

inc

the elements of 6 by (67). Next, (23) is solved for ?inc. The coef-

ficients {I;nc} will then be the elements of I "C.
>a . 73
To solve (34) for I, we must first evaluate the elements of V .
In the E(O, 2§1) that appears in (35), 2§1 represents the two magnetic cur-

rents, each of density M,, that straddle the y axis in Fig. 5. Therefore,

1

E(0, Zgl) vanishes on the y axis. Because JN is on the y axis and because

E(0, Zgl) vanishes there, it is evident from (35) that
V2 =0 (68)
The next two paragraphs are devoted to evaluating Vi for i # N.

The electric field E(O, 2§1) that appears in expression (35) for

V? is given by {9, eqs. (3-4) and (5-96)]

w
EQO, 2M) = % 7 x [Ml(y') H§2)(k \[x2 + (3-y"D gy’ (69)
-w
where (x,y) are the rectangular coordinates of the point at which E(O, 2§1)
is evaluated. Furthermore, "Vx" is the curl operator with respect to the
coordinates (x,y). If i # N, then gi is remote from the magnetic current
sheet 2M

1
this magnetic current sheet. In this case, the curl operator in (69) can

so that the E(O, 2&1) that appears in (35) is not evaluated on

be taken under the integral sign. Taking the curl operator under the

integral sign, substituting (47) for ﬁl in (69), and using [9, egqs. (A-14)

and (D-15)], we obtain
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(70)

e ?,/1 - (y'n? H{Z) (k\/x2 + -y"H
E(O, 2M1) 2 -y 4 dy'
== =z 2z 7. . .2
~w x" + (y-y")

Substitution of (70) and (46) into (35) gives
tin / 7 @), [2 2

[ x\1 ~ (y'/w) Hy kyVx™ + (y=-y"))
" - 1 , 1=1,2,...,N-1
i 2 2 2

ty - \/x + (y-y")
(71)

where (x,y) are the rectangular coordinates of the point on the contour of

sc , . . . .
S at which the arc length is t. If new variables of integration u and u'

are defined by

u=k(t - 0.5 (ti + » (72)

tivl

and
u' = ky' (73)

then (71) becomes

0.5y, kv ) (E$)2 H£2)(aiN)

. i
v2 = -2 ( du(kxf + u cos ¢.) du' , 1=1,2,...,N-1
i 2k J i i a'V
-0.5y —kw -
i (74)

where Yy x+ are given by (53), (55), (57), and (54), respec-

i iN

. X sc
tively. Because of the orientation of the Nth segment of the contour of S,

s COS8 ¢i, and o

expression (54) for %oy reduces to

- + 2 + Y
S \/(kxi + u cos ¢>i) + (kyi + u sin ¢i u') (75)

The double integral in (74) is evaluated by the method of two-dimensional
Gaussian quadrature. Now, the quantities Z and ga that appear in (34) are

known, the diagonal elements of Z being given by (64), the remaining elements
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of Z by (52), V: by (68), and the remaining elements of Ve by (74). Next,
&
o (34) is solved for I°. The coefficients {I;} will then be the elements

- of fa.

VII. EVALUATION OF THE MAGNETIC CURRENT COEFFICIENT V FOR TM PLANE
WAVE EXCITATION

e In this section, the coefficient V that appears in (42) and (43)

is evaluated for the case in which the incident electromagnetic field

(Elnc, Einc) is the TM plane wave given by (44) and (45), the electric cur-

rent expansion functions {gj} are given by (46), and the magnetic current
- expansion function Ml is given by (47). To solve (10) for V, we must first
- evaluate Ya, Yb, and I. Here, Y2 is given by (38), Yb by (41), and I by

(28). The next eight paragraphs are devoted to evaluating v2.

f - Expression (38) for Y? is recast as

e hs X a -
- =y 7 I C (76)

where

w
e - -j M - E(O, 24 )dy an
W

and

M - B Ody (78)

hs

The superscript "hs" in (77) denotes half space. As defined by (77), is

]

what Y2 would be 1if region a were the half-space region for which x < 0. The
truth of this statement is evident because, if region a were the half-sgpace

region for which x < 0, then $%¢ would be the yz plane at x=0, and the split

- magnetic current sheet 2§1 defined in the sentence that contains (29) would

= induce no electric current on this plane so that the summation with respect

S N
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to j in (76) would wvanish.

The H(O, Zgl) that appears in (77) is obtained by replacing Es by

H(o, Zgl), J by Zyl, U by €, and € by u in [8, egs. (3-52) to (3-54)]. Thus,

H(0, 24 ) =-juE - V¢ (79)
where
w
F= % Jml(y') HéZ)(klyw'l)dy' © (80)
-W
and
(y
I J = 1y?) (kly=y ' Dy’ (81)

-W

Here, w is the angular frequency. It has been assumed that gl(y') exists
only at x = 0 and has only a y component Mly(y'). The (x,y) coordinates
at which F and ? are evaluated in (80) and (81) are (0, y). Substitution

of (79) into (77) gives

w
Yhs = jw J gl(y) « Fdy + M1 (Y) (82)
W

2‘——.2

Integrating by parts the second integral on the right-hand side of (82) and

anticipating that Mly(tw) will vanish, we obtain

w
d M, (y)
S o jw J M, (y) * Fdy - ——dl-(j:—— ¢ dy (83)
W

£~

1f (80), (81), and (47) are substituted into (83) and if new variables of

integration u and u' are defined by

us=y/w (84)

u' = y'/w (85)

)
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then (83) becomes

2
(kw)’Cc, - C
hs A $
.-".1"\4'
where :;'»:r
1 1 RN
c, = J du [1-u° J ' f1-(u")? 322) (kw|u=u' 1) (87) Pt
-1 -1 .‘-‘f
RS
1 1 NN
fao 2 [ —— nP (88)
A 12 J1-wn?
Appealing to (60), we recast (87) and (88) as N 1
1 1
Cy =T, + J du /1—u2 Jdu'\/l—(u')z[ﬂ( (kwlu-u'[) - 1 + 1= (—k—"’L“—“—J-)] s
-1 -1 (89) R
e ; L T
' :'-..'.-.'-
Co = Ip * [du (e =2 [H‘”(kwlu —u'|)-1 +J— 1n (Mﬂ—'m At
J
-1 l—u2 -1 1-(u’ ) SR
. (90)
where )
1 1 l P
I, = J du /1-u® J du'f1-@H? 1 - L1 (ﬁ‘L‘;-i-L)] (91) .
-1 -1 .. A
and

-
——
»

au —8 ——u S 12y, let]y (92)
,/l-uz -1 \/1 (u' )

It is evident from [11, eqs. (A6a) and (A6c)] that

1
J V1= @H? 10 fu-u'ldu’ =7 (u? -%- 1n 2) (93)
1

From [10, Formula 350.01.], we obtain
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4 ‘t’:‘.'-;
> 1 P,
. 2 m 0-: ‘:'.‘. )

| - ' ' = - . ",
i J 1~ (u')" du 2 (94) :j-;.:

-1 F

_.’\ J-:r, '
::: From [10, Formula 352.0l1.], we obtain ':-&:":

; 50
Ry 1 L&ﬁ
. j uz‘,/l - u? du =% (95)

-1
lj’, Equations (93) - (95) are used to reduce (91) to
' TI’2 jr 1 Ykw
IA=T+—2— (Z- 1n (—4—)) (96)

It is evident from [11l, Eq. (A6b)] that

B
=

t LN
e lnlu-u' |du' = - Tu 97 '.::..‘_-
;;:', - "1 - (u')2 :

L
i It is evident from [10, Formula 322.0l1.] that )

i u2 i
[ .t oo
~ -1 ,/]. - u2

Equations (97) and (98) are used to reduce (92) to

- -
]

.
(]

'I Iy = 3w (99)
i‘ Now, the Yhs that appears in expression (76) for v2 is given by i; ?i
;: (86) in which CA and C@ are given by (89) and (90), respectively. In (89)
- and (90), IA and Ib are given by (96) and (99), respectively. The double
integrals that appear explicitly in (89) and (90) are evaluated by the
method of two-dimensional Gaussian quadrature.
! The C; that appears in expression (76) for Y2 is given by (78). 1In

(78), the y component of H (JN’ 0) is called Hy(iN’ 0). Since iN is u,

.' .' g

DU | "IN
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on the shorting strip, it follows that, at x=0 ,
0.5, -w<y<w
Hy Gy O = (100)

0, lyl>w

Substitution of (47) and (100) into (78) gives

,/1 - (%)2 dy (101)

Expressing the integral in (101) as the product of w with the integral in

1
““ T°2

£ %

(94), we obtain

. =- (102)

Striving to evaluate C; for j # N, we let the y component of E(Jj, 0)

be Hy(gj, 0) and express it as [8, eqs. (3-26) and (3-32)]

En+1

. 7x 7}3‘ J 3" 12 Jx)? + -y Dar: (103)
0

H (J,, 0) =
g3y O =y

where (x,y) are the rectangular coordinates of the point at which Hy(gj, 0)
is evaluated, and (x', y') are the rectangular coordinates of the point on
the contour of §°C at which the arc length is t'. 1In (103), "Vx" is the
curl operator with respect to the coordinates (x,y). If (x', y') never

coincides with (x,y), then the curl operator can be taken under the integral

sign in (103). Taking the curl operator under the integral sign, substituting

(46) into (103), and using [9, egqs. (A~14) and (D-15)], we obtain
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t
j+1
n 5(2) 2 2
3 T (x-x") H277(k \f (x=x")" + (y-y")")
H (> 0) i 1 \/ : dt'  (104)
‘3 \[(x-X')z + g-y"?
Substitution of (47) and (104) into (78) gives
t
w j+1 [ (2) \/ ' 2 ] 2
. dt'x' (k&7 + -y
- _ ik _ 2 ] 1.
Cj 4 fdy\/l (y/W) . - » J#N
-w & \/(x')_ + (y-y") (105)

If new variables of integration u and u' are defined by

u = ky (106)

u'= k(t' - O.S(cj + )) (107)

541
then (105) becomes
kw 0.5y, vt 1 2)
_ . j du'(kx, + u' cos ¢,) H7(a,.)
c, =+ J du,/l-(f;)z J( L 21 N , 3#N

b 4k O 3
- - N]
kw O.EYj (108)

where Yj’ x;, cos ¢j, and uNj are given by (53), (55), (57), and (54),
respectively. The double integral on the right-hand side of (108) is the
double integral on the right~hand side of (74) with i replaced by j, with u

and u' interchanged, and with the order of integration interchanged.

Therefore,

1l .a
C, =-=V,, j=1,2,...,N-1 (109)
] 2 ] i

where V? is given by the right-hand side of (74) with i replaced by j.
%} that appear in expression (76) for Y2 are given by

h|
(109) and (102). The evaluation of the Yhs that appears in (76) was de-

Now, the {C

scribed in the paragraph that follows (99). The coefficients {I?} that
appear in (76) were evaluated in Section VI. This concludes our de-

scription of the evaluation of Y2,
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Expression (41) for Yb is recast as
b hs N a .+
Y =Y~ - ) I,C, (110)
hs . + .
where Y =~ is given by (77) and Cj is given by
W
+ [ +
C, = M, - H J,, 0) d 111
3 JI__1 __(_J ) dy (111)
-w

+ . + .
In (111), the y component of E_(QN, 0) is called Hy(gN, 0). Since JN is

u on the shorting strip, it follows that, at x = 0+

0.5, -w<y<w

gt 0) = (112)

y =N
0 , lyl>w

Now, H; of (112) is the negative of H; of (100). Therefore, C; of (111)

is the negative of CN of (102).

C., ==-C (113)

If 5 # N, then c; of (111) is equal to cg of (109).
cl =l 3= 12,01 (114)

Now the {C;} that appear in expression (110) for P are given by
(114) and (113). The quantities Yhs and I? on the right-hand side of
(110) are the same as in (76). This concludes our description of the
evaluation of Yb.

The quantity (Y2 + Y®) appears in (10). Thanks to (109), (113),

and (114), the sum of (76) and (110) reduces to
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N-~1
P4y =2y T 2 (115)
5 3
J
Expression (28) for I is recast as
inc N inc -
I=Cc" + § 1,°¢C, (116)
=1 J J
where C; is given by (78), and
w
cinc _ j !1 . E1ncdy (117)
-w

Substituting (45) and (47) into (117) and then introducing the new variable

of integration u defined by (84), we obtain

1
Cinc = % cos ¢ ¢ J,/l - u2 cos (kw u sin ¢1nc)du (118)
-1

The integral in (118) is evaluated by the method of Gaussian quadrature.
Now, the quantity I that appears in (10) is given by (116) in which
Cinc is given by (118), the {C;} are given by (109) and (102), and the
{I;nc} were evaluated in Section VI. The quantity x? + Yb) that appears
in (10) is given by (115) in which Yhs is evaluated as described in the
paragréph that follows (99), the {Ii} were evaluated in Section VI, and

V? is given by (74) with i replaced by j. After I and (Ya + Yb) have been

evaluated, (10) can be solved for V.
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VIII. NUMERICAL RESULTS FOR A SLOTTED TM CIRCULAR CYLINDRICAL SURFACE

In this section, numerical results are presented for the magnetic

current coefficient V for the slotted T™ cylindrical surface shown in

L4
v
i
r

w3
Fig. 6 with
ka = 7/2
(119)
= -]
Cbo 5
In (44), blnc is set equal to 180° so that the incident electric field
Elnc is given by
BN =y oI (120)

The coefficient V was calculated by three different methods, the method

of solution with pseudo-image, the method of solution without pseudo-
image, and the Fourier series method of solution. The method of solution
with pseudo-image is the method of solution described in Sections III to
VII. This method was applied using 10-point Gaussian quadratufe whenever
Gaussian quadrature was called for, dividing the circular arc of Fig. 6
into 35 small arcs each of angular extent 10°, and replacing each of these

arcs by the straight line segment joining its end points. The method of

solution without pseudo-image is described in Appendix A, and the Fourier
series method of solution is described in Appendix B. All three methods
of solution were implemented by means of computer programs which will be
described and listed in a forthcoming report. )

The method of solution without pseudo-image differs from the method

of solution described in Sections III to VII in that the pseudo-image of

Section V is eliminated. That is, the short-circuit fields due to the

magnetic current expansion function gl placed on the left-hand side of the o
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_Einc_yz e‘Jk"

Fig. 6. The slotted TM cylindrical surface és viewed in the xy plane. 1t is
an infinitesimally thin perfectly conducting circular cylindrical
shell of radius a centered at (x=a cos ¢°, y=0) with a slot of
angular width 2¢°. The edges of the shell are at (x=0, y=ta sin ¢°).
ka = m/2 and ¢o = 5°,
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shorted aperture are obtained by solving the scattering problem of Fig. 4
rather than that of Fig. 5. Similarly, the short-circuit fields due to !1
placed on the right-hand side of the shorted aperture are obtained by solv-~
ing the scattering problem not of Fig. 5 but of the situation that would
exist in Fig. 4 if §1 were placed on the right-hand side of the shorted
aperture instead of on the left-hand side of it.

In the Fourier series method of solutidn, the aperture electric field

E rather than the magnetic current M is expanded. Furthermore, E is ex-

panded not on the straight line connects the end points (x =0, y = ¢ a sin@o)

of the circular arc in Fig. 6, but on the circular arc of angular extent 2¢°

that connects these end points. The combination of this circular arc of angu-

lar extent 2¢o and the existing circular arc in Fig. 6 would form a complete

circle. In the Fourier series method of solution,

- & - 180°.2 o :
- Vu_ /1— (=5 s =0, < 0 - 180° < & (121)

o

E(®)

where V is an unknown complex constant to be evaluated and ¢ is the angle
shown in Fig. 6. If the y axis passed through the center of the circle
whose arc appears in Fig. 6, then ¢ would be the usual cylindrical coordi-
nate angle measured in the counterclockwise direction from the positive

x axis. In (121), E(¢) is the electric field on the circular arc of extent
2®o needed to complete the circle in Fig. 6. Therefore, the (x,y) coordi-

nates of the location of E(¢) are given by

x = a(cos ¢o + cos @)
(122)

y = a sin $
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To compare the method of solution with pseudo-image to the Fourier
series method of solution, we must interpret M of (9) in terms of the
electric field E in the slot. Combining (1) with (9) and assuming that E

has no component in the x direction, we obtain

E=-Vu xM (123)

Substitution of (47) into (123) gives

EW =-Vo /1 - g%, w<y<w (124)

No confusion should arise from the fact that the argument of E of (124)
is a rectangular coordinate whereas that of E of (121) is an angle. The
E of (124) is the electric field at x = 0 in the slot, but the E of (121)
is the electric field on the circular arc of angular extent 2¢° needed to
complete the circle in Fig. 6. The (x,y) coordinates on this circular
arc are given in terms of ¢ by (122).

Calculated values of V are presented in Table 1. In Table 1, the
phases of V are nearly the same, differing by 0.24° at most. The phase
lead of 0.21° for the V obtained by the Fourier series method of solution

with respect to the V obtained by the method of solution with pseudo-image

is reasonable because it is shown as follows that the phase of Eﬁnc at the Lol
location of E(180°) of (121) is 0.342° and that the phase of E}nc at the ff;:
location of E(0) of (124) is 0°. According to the first of equations (122) ii;—

and the second of equations (119), the x coordinate of the location of

E(180°) of (121) is given by

x = - 0.0038a (125)

e e et e ettt Tt et et e e ST S IR S O
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Thanks to the first of equations (119), the phase of E}nc of (120) is

0.342° when x is given by (125). Therefore, the phase of Einc at the

location of E(180°) of (121) is 0.342°.

tion of E(0) of (124) is zero. At x = 0, the phase of E?nc of (120) is 0°.

Therefore, the phase ofginc at the location of E(0) of (124) is 0°.

Table 1. The coefficient V for the slotted T™M circular

surface shown in Fig. 6.

cylindrical

The x coordinate of the loca-
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Real Imaginary | Magunitude Phase of Vi
Method of solution part of V| part of V of V in degrees |
With pseudo-image -0.0347 -0.1483 0.1523 -103.17
|
Without pseudo-imagel -0.0399 | -0.1701 0.1747 -103.20
Fourier series ~0.03464 ' -0.1495 | 0.1534 -102.96 :
In Table 1, the magnitude of the V obtained by the method of solu- ?ﬁ“ﬁ

tion with pseudo-image is a trifle smaller than that of the V obtained

by the Fourier series method of solution. This is expected because the
location of E(0) of (124) is slightly inside the circular arc in Fig. 6

as compared to the location of E(180°) of (121). The electric field

should decrease as the interior of an aperture perforated cavity is

approached.

In Table 1, the complex number V obtained by the method of solu-

tion with pseudo-image agrees well with that obtained by the Fourier

7
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series method of solution. However, the magnitude of the complex number

bl
V obtained by the method of solution without pseudo-image is more than :{;c;
10% too large. In this case, the complex number V obtained by the method TR
S _~.:_-‘
of solution with pseudo~image is evidently more accurate than that obtained :i“i‘
i
R
>




W TN T T AR O N A T,
“:‘-':'.:.,.\‘:-.."..r“',-\, A .':‘:'-".v‘:‘k-.' ARG (}. LN

ST
2
A
.-

41

i

b %
:,;.)V}

A 0 e 2 B ]
[
CA X

‘.
DA
e
yd
L
.

by the method of solution without pseudo-image. We believe that, for

scattering problems involving small apertures, the method of solution !!l

3

.
"'d
]

with pseudo-image gives results that are generally more accurate than -

..
Y

v
‘.

those obtained by the method of solution without pseudo~image. More D!

x

computations are presently being done in order to verify this belief.
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x APPENDIX A

THE METHOD OF SOLUTION WITHOUT PSEUDO-IMAGE

e
B
“e

.
e
a0,

® )
‘!

Calculation of the magnetic current coefficient V by means of the

-:_ method of solution without pseudo-image is described in this appendix.
Equation (10) can be solved for V if the quantities Ya; Yb, and I are
known. In the method of solution without pseudo-image, the short-circuit

g magnetic field gé(o, gl) in expression (11) for Y? is obtained by solving

the scattering problem of Fig. 4 rather than that of Fig. 5. Moreover,

f: the short-circuit magnetic field EP(O, gl) in expression (12) for Yb is

obtained by solving the scattering problem not of Fig. 5 but of the

iy situation that would exist in Fig. 4 if !1 were placed on the right-hand

side of the shorted aperture instead of on the left-hand side of it.

Furthermore, the quantity I in (10) is the same as obtained by the method

of solution with pseudo-image.

. Considering the situation of Fig. 4 rather than that of Fig. 5, we

write, instead of (29) and (30),

E*(0, ¥;) = E(0, M) + EQ®™, 0)  in region a (a-1) L
and 'i— :

g?(o, El) = H(0, g;) + Eﬁg?w, 0) in region a (A-2) e

where gaw is the electric current induced on $°€ in Fig. 4. The "w" in

the superscript "aw" means without pseudo-image. The superscript "-" on

M. on the right-hand sides of (A-1) and (A-2) indicates that gl is placed

1
on the left~hand side of the shorted aperture. Analogous to (33), géw

is

g approximated by

................ e e o
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-----
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N
12V I?wg. (a-3)
=1 37
so that (34) is replaced by
2 T8V . (A=)

where the jth element of'-faw is the constant I?w that appears in (A-3).

The ith element of 72V is given by

SN+l
aw - :
vy - J 3, + E(0, MDdt (A-5)
0

Substitution of (A-3) into (A-2) gives
a - X aw
H(0, M) = H(O, M) + -21 17" B(y» 0)  in regioma (A-6)

Substituting (A-6) into (11) with e replaced by v®Y where the extra

- superscript "w'" means without pseudo-image, we obtain

. . aw _ 1 _hs ¥ o aw - '

. v ez y® . 1.0 C) : A-7
5 z j 6 (A-7)

i=1
h -
where Y © is given by (77) and Cj by (78).

Consider the situation that would exist if §1 was on the right-hand
side of the shorted aperture in Fig. 4 instead of on the left-hand side of
it. In this situatiom, the electromagnetic field (EP(O, §1), EP(O, M) 1is

given by

gb(o, E1) = E(O, 5’{) +§(gb“’, 0) in regiom b (A-8)
EP(O. M,) = B(O, EI) + gﬁgkw, 0) in region b (A-9)

where g?w is the electric current induced on Ssc in the previously de-~
scribed situation. In the superscript "bw" the "y" denotes the electro-

magnetic field problem in region b, and the "w" means without pseudo-image.
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The superscript "+" on !1 on the right-hand sides of (A-8) and (A-9) indi-

, 1

. Analogous to (33), g?w is approximated by
_ N

!, P T o1

- - j‘l J =1

cates that M, is placed on the right-hand side of the shorted aperture.

(A-10)

Using the method of moments to solve the electromagnetic field problem,

' we obtain the following matrix equation which is similar to (34).
. z Y . PV (a-11)
. *bw | bw
The jth element of I =~ is the constant Ij that appears in (A-10). The
, Tbw | ,
ith element of V= is given by
N+
bw +
vt = 3, * E(, M)dt (A-12)
y 0
Eff Substitution of (A~10) into (A-9) gives
!! b + N bw
i " (0, yi) = H(O, El) + ¥ Ij _gglj, 0) in region b (A-13)
o j=1
Eﬁ Substituting (A-13) into (12) with Yb replaced by wa where the extra
;: superscript "w'" means without pseudo-image, we obtain
3 bw _1.hs N _bwt
- LR ) 1,°¢; (A-14)
» §=1
:f hs +
- where Y is given by (77) and Cj by (111).
e The sum of (A-7) and (A-14) is
.
™, X -
g Yaw + wa - Yhs _ 2 (Iawc + Ibwc+) (A-15)
E:: Because C; is given by (102) and (109) and C; is given in terms of C;
. .
o
i
.-
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i by (113) and (114), (A-15) becomes "if"»
. N-1 "\.\. "V
s aw b h '
- eI LA L L S L R e WA Lo (A-16) :Nt-:,
: 4 VN N 25 4 i’ Y
.: nlyi
! The sum of (A-4) and (A-11) is '

2 Z[12Y + —fbw] = 7Y 4 gV (A-17)

l It is evident from (A~5), (A-12), and (35) that

v TR LU L (A-18)

= Substituting (A~18) into (A-17) and comparing the result with (34), we

~ obtain

%Y+ 1% 2 12, 4=1,2,....N (A-19)

- J J J NG

! Equation (A-19) is true becausé the sum of the electromagnetic sources in ké N

E the field problems whose matrix equations are (A-4) and (A-11) is the elec- ;i;%:_
S

i tromagnetic source in the field problem whose matrix equation is (34). y:&:’
. Subtracting (A-11) from (A-4), we obtain : 3
- >

. Z[Iaw _ Ebw] - vaw _ gbw (A-20)

The difference between (A-5) and (A-12) is
t

N+1
aw bw - +
vy -V o= J I+ (E(0, M) - E(0, M)))dt (A-21)
’ 0
: Because El is M, placed on the left-hand side of the shorted aperture :
i and g; is M, placed on the right-hand side of the shorted aperture where ;:3:
2,5,

El is given by (47), the difference field in (A-21) exists only at x = 0

between the magnetic current sheets !; and g; where it is given by

. - - - . s ¢ = e e & - L) I . L LI = = -
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E(0, X)) - E(0, _M_I) =u /1~ (y/w)? (a-22)

Substituting (A-22) and (46) into (A-21) and using (94), we obtain

aw bw _ _ _
Vi - Vi =0, i=1,2,...,N-1
(A-23)
aw bw Tw
v % =% J
Substitution of (A-19) into (A-16) gives
¢V 4 wa - Yhs +T9qaw Ibw) N Nil 2 2 (A-24)
T A R R

where, from what was done in the previous paragraph,(Igw - I;w) is the

Nth element of the solution [faw - fbw] to (A-20) when the elements of

[Vaw - wa] are given by (A-23). Comparison of (A-24) with (115) gives
aw bw 1 a b ™w aw bw
YU+ Y =§-(Y +Y)+T(IN - (A-25)

Affixing the superscript "w" to all quantities on the left-hand side of
(10) to indicate without pseudo-image, and solving the resulting equation

" .
for V', we obtain

W= /0 + ¥7Y) (A-26)

where V¥ is the magnetic current coefficient obtained by the method of

solution without pseudo-image and (Yaw + wa) is given by (A-25).
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THE FOURIER SERIES METHOD OF SOLUTION FOR A SLOTTED T™
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CIRCULAR CYLINDRICAL SURFACE
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! In this appendix, the Fourier series method of solution is used to .91{

; RSy
~ solve the scattering problem that arises when the electric field Einc of f}ff'

(120) is incident on the conducting surface in Fig. 6. We require that
EZ be continuous at p=a where Ez is the z component of the electric field el

and p is the distance from the center of the circle whose arc appears in s

Fig. 6. Combining (121) with the fact that Ez vanishes on the circular

. arc in Fig. 6, we obtain L
‘ :‘:'::"‘:,
. — 5" d.h:t*::
- -v 1o &2 g <o- 1800 <o
. ¢ o — -0 W
. (o) :.‘...."“
. E = (B-1)
- 0 , other values of ¢ RN
i at 0=a. If the y axis passed through the center of the circle whose arc xf
l appears in Fig. 6, then ¢ would be the usual cylindrical coordinate angle '

measured in the counterclockwise direction from the positive x axis. Since

Ez is constrained by (B-1), the ¢ component of the magnetic field can not be

Ll TP

continuous across the entire circular arc of angular extent 2¢° that bridges b

the gap to form a complete circle in Fig. 6. However, the ¢ component of the
magnetic field can satisfy }1';;
) "
180°+0_
- - ° =7 ._.'
f (H+-H) J]__ (i__l_SO_)Z d¢=0 (3_2) NENERRE,

I 3

180l-¢>o

| where H; is the limit as p approaches a from below of the ¢ component of
the magnetic field and Hg is the limit as p approaches a from above of the
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¢ component of the magnetic field. 1In what follows, Ez is expanded in
separate Fourier series in the regions for which 0 < a and & > a, Ez is
required to be continuous at p=a, andg_z is for;ed to conform with (B-1)
at C=a. Finally, (B-2) is used to determine the unknown complex constant
V that appears in (B-1).

In the region for which p > a, the Fourier series expansion for Ez
consists of the Fourier series expansion of Einc and a sum of qutward-
traveling waves. Here, Einc is the z component of the incident electric
field. The x coordinate that appears in expression (120) for Einc is

expressed in terms of 0 and ¢ as

x = acos b +2cosd (B=3)
Substituting (B~3) into (120), and then taking the z component of the
resulting equation, we obtain
-jka cos o
)

E = e e‘.Jk'o cos 9 (B-4)

If [9, eq. (5-101)) is used to expand the second exponential in (B=-4),

then (B-=4) becomes

ine -jka cos 2 x - ‘0o
E1RC - o ° ¥ Jn(ko)eJ (B-5)

n=~o
where Jn is the Bessel function of the first kind of order n.

Since Ez is éinite at o = 0, the Fourier series expansion for Ez in
the region for which p < a can have only Bessel functions of the first
kind. Moreover, the Fourier series expansion for Ez in the region for

which 2 > a consists of Einc of (B-5) and a sum of outward traveling waves.

Therefore,
~ :
-jka cos ¢ ©
e ° 3 Aan(ko)ej“d’ , o<a
et I
E, = (B-6)
-jka cos ¢ «© - _
e ° 1 ™ o) + B E D a0el™, o> a
1198 =0
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where Héz) is the Hankel function of the second kind of order n, and An
and Bn are unknown complex constants. Requiring Ez of (B-6) to be con-
tinuous at 0=a, we obtain
(A, = 3T (ka)
Hn (ka)
Substitution of (B-7) into (B-6) gives
-jka cos 9 o .
o _ jn¢
e njlm Aan(ko)e » 0 < a
Ez = (B-8)
-n
-jka cos ¢ % _ (A -3 ) J_(ka) .
L ° ] (T o) + —Ey— H(P (k0))e?™, 5 2 a
n=— ’ Hn (ka)

Requiring the upper right-hand side of (B-8) at o0=a to be equal to

the right-hand side of (B-1), we obtain

~V v/;_ - (9_—1@—1-81-)2 s -¢o<_¢_180°_<_ ¢)o
- -jka cos ¢ © i mo °
- e °© 7 AJ (ka)el™ = (B=9)
m m

i L 0 , other values of ¢

- The new summation index m in (B~9) was chosen for convenience. Multiplying

S: both sides of (B-9) by e-jn¢ and integrating from O to 27 with respect to
S 9, we obtain

180°+4
- ~jka cos ¢ o - 180°.2 ~i
21 &_J_(ka)e °ouvy | /1-(u9—) 737 4o
. nn ¢o

}o
180°-6

é (B-10)

If the quantity in parentheses on the right-hand side of (B-10) is called

vy
LINL IS

A

x, then (B~10) reduces to

~jka cos ¢o
2m Aan(ka)e = - V¢o(‘1)

Vl-xzcos(n¢ox)dx (B-11)

=}
e




According to [12, Formula 3.752 (2.)],

Yo— 3, Unlo))
J 1 - x" cos (n¢ox)dx = w-——ﬁ;ﬁg——-
-1 °

Equation (B-12) is written with the understanding that

to be replaced by 1/2 when n is zero.
leads to

~jka cos ¢o

vo_(-1)"

Substitution of (B-12) into (B-11l)

Jl(]n]¢o)

Aan(ka)e 5

Substituting (B-13) into (B-8), we obtain

Ve -1)" Jl(Incho)
-7 njim 1@ CTaTs,
Vo n Jl({n{¢o)

) Jn(kO)ejn¢ )

- =2 E (-1) (

z 2 n=-x HIEZ) (ka) ln[cbo
-jka cos ¢ ®© _
e ° 7 i n(Jn(ko) -
nz—oo

With a view toward enforcing (B-2), we call the ¢ component of the

magnetic field H, and express it as [9, eq.

¢

- BEZ
B =" %tn 5o

$

BEN

< a

) Hiz)(ko)ejn¢ +

J (ka)
e

Hiz)(ka) n

(5-18)]

The limits of (B~15) as p approaches a from below and above are

. 5E
Hy = - ﬁL lim 7;2

n ora= 99

and

. ) A

+ d z
- 11 ——3

H¢ ® T kn m 3P

Jl(lnl¢°)/(}n!¢o) is

(ko))eI™®,5 > a

(B-12)

(B-13)

(B-14)

(B-15)

ror
(B-16)
(B-17)
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A
}f$$:
N
oot &
where 1lim and lim denote the limits as P approaches a from below and above, it-n
pra” po»at _—
respectively. Substitution of (B-14) into (B-16) and (B-17) gives !{;ﬂ
'ﬂ.;::l..‘
(laloy) o
ive n J,(inld . o
- o (-1) 1 o jn¢ RN
H = —— ) ¢ ) J'(ka)e (B~18)
¢ 2N n=o Jn(ka) ln ¢o n
and
s Ve, = pyn Tnle) oy gng
Hy = ~7m P ) By (et -
n=—® Hn (ka) |n|¢o
-jka cos ¢ o _ J (ka) ,
1. °© T 3@ ka) - S 1P waned™?
n=~—o Hn (ka) (B-19)
The identity [9, eqs. (D-12) and (D-17)]
2)’ - (2) e - 23 -
Jn(x) Hn (x) Jn(x)_Hn (x) p— (B-20)
reduces the difference of (B-18) and (B-19) to g
P C R 2 Iy Unle) 1 Jué
By = By = Tha L1 ) (2) ) *
n=-® ln]¢o J (ka) H ' (ka)
g “ikacos ¢, T 4m Jnd (B-21)
e
mrika ne= B%) (ka)
Substitution of (B-21) into (B-2) and use of the identity
180°+¢ '
f [o] — ] . J (lnl¢ )
1 - @07 % gg @ me ()T ) (B-22)
180°-9 ° [nle,
o
lead to

..............................
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Y
:? -jka cos ¢ = 5P Jl(]n|¢o)
<, Ze (2) (
- n=-o Hn (ka) |nl¢o

V= - -
= = T, (aTe) (B-23)
- 1 1 0.2
-~ %o n==o J (ka) g(® (ka) |n]¢ )
:: n n o

The identity (B-22) was obtained by noting that the value of the integral

3y on the left~hand side of (B-22) is the same as the value of the integral
: on the right-hand side of (B-10) and by determining this common value by
comparing (B-13) with (B-10). Recalling that J1(|n|¢o)/(ln|¢°) is to be
replaced by 1/2 when n = 0 and using the identities [13, Formulas 9.1.5

~ and 9.1.6]

I_ ) = (D&
(B-24)

12w = 1P e

each term for which n is a negative integer in the sums on the right-hand
side of (B-23) can be combined with the term for which n is the positive

integer of the same magnitude. Thus, (B-23) becomes

-3k © n J. (nd )
) jka cos ¢o[ (;) + (ig ( 1n¢ °y1
4 H (ka) n=1 H (ka) o
V= - o — 2 TGry . (3-25)
6 I 1 + z 1 (l o )2]

° '8 J_(ka) ué”(ka) n=l Jn(ka)Ht(lz)(ka) nd,
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